Stability Analysis of Lattice Boltzmann Methods

نویسندگان

  • James D. Sterling
  • Shiyi Chen
چکیده

The lattice Boltzmann equation describes the evolution of the velocity distribution function on a lattice in a manner that macroscopic fluid dynamical behavior is recovered. Although the equation is a derivative of lattice gas automata, it may be interpreted as a Lagrangian finite-difference method for the numerical simulation of the discrete-velocity Boltzmann equation that makes use of a BGK collision operator. As a result, it is not surprising that numerical instability of lattice Boltzmann methods have been frequently encountered by researchers. We present an analysis of the stability of perturbations of the particle populations linearized about equilibrium values corresponding to a constantdensity uniform mean flow. The linear stability depends on the following parameters: the distribution of the mass at a site between the different discrete speeds, the BGK relaxation time, the mean velocity, and the wavenumber of the perturbations. This parameter space is too large to compute the complete stability characteristics. We report some stability results for a subset of the parameter space for a 7-velocity hexagonal lattice, a 9-velocity square lattice and a 15-velocity cubic lattice. Results common to all three lattices are 1) the BGK relaxation time τ must be greater than 1 2 corresponding to positive shear viscosity, 2) there exists a maximum stable mean velocity for fixed values of the other parameters and 3) as τ is increased from 1 2 the maximum stable velocity increases monotonically until some fixed velocity is reached which does not change for larger τ .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introduced a Modified Set of Boundary Condition of Lattice Boltzmann Method Based on Bennett extension in Presence of Buoyancy Term Considering Variable Diffusion Coefficients

Various numerical boundary condition methods have been proposed to simulate various aspects of the no-slip wall condition using the Lattice Boltzmann Method. In this paper, a new boundary condition scheme is developed to model the no-slip wall condition in the presence of the body force term near the wall which is based on the Bennett extension. The error related to the new model is smaller tha...

متن کامل

کاربرد و مقایسه روش های بولتزمن شبکه ای مختلف با شبکه بندی غیریکنواخت در شبیه سازی جریان در داخل میکروحفره و میکروکانال

In this study, for the first time, a comparison of single-relaxation-time, multi-relaxation-time and entropic lattice Boltzmann methods on non-uniform meshes is performed and application of these methods for simulation of two-dimensional cavity flows, channel flows and channel flows with sudden expansion is studied in the slip and near transition regimes. In this work, Taylor series expansion a...

متن کامل

Evaluation of two lattice Boltzmann methods for fluid flow simulation in a stirred tank

In the present study, commonly used weakly compressible lattice Boltzmann method and Guo incompressible lattice Boltzmann method have been used to simulate fluid flow in a stirred tank. For this purpose a 3D Parallel code has been developed in the framework of the lattice Boltzmann method. This program has been used for simulation of flow at different geometries such as 2D channel fluid flow an...

متن کامل

The effect of boundary conditions on the accuracy and stability of the numerical solution of fluid flows by Lattice-Boltzmann method

The aim of this study is to investigate the effect of boundary conditions on the accuracy and stability of the numerical solution of fluid flows in the context of single relaxation time Lattice Boltzmann method (SRT-LBM). The fluid flows are simulated using regularized, no-slip, Zou-He and bounce back boundary conditions for straight surfaces in a lid driven cavity and the two-dimensional flow ...

متن کامل

Numerical analysis of gas flows in a microchannel using the Cascaded Lattice Boltzmann Method with varying Bosanquet parameter

Abstract. In this paper, a Cascaded Lattice Boltzmann Method with second order slip boundary conditions is developed to study gas flows in a microchannel in the slip and transition flow regimes with a wide range of Knudsen numbers. For the first time the effect of wall confinement is considered on the effective mean free path of the gas molecules using a function with nonconstant Bosanquet para...

متن کامل

Convergence of Convective-Diffusive Lattice Boltzmann Methods

Lattice Boltzmann methods are numerical schemes derived as a kinetic approximation of an underlying lattice gas. A numerical convergence theory for nonlinear convective-diffusive lattice Boltzmann methods is established. Convergence, consistency, and stability are defined through truncated Hilbert expansions. In this setting it is shown that consistency and stability imply convergence. Monotone...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993